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Thorne's method for obtaining transport coefficients in a binary rigid-sphere 
mixture is reexamined. First, a dose look is taken at the way in which the 
point where the Enskog functions ,v,; ;,re evaluated is introduced. Second, 
the calculation of the fluxes in the system and the transport coefficients is 
given. Thorne's  results arc found to bc correct and independent of the choice 
of the point where the transfer phlnc is Iocalcd. This does not hold true for 
the diffusion flux. It is shown that a different diffusion force is obtained for 
each selection and that only those diffusional effects which are of first order 
in the density are consistent v, ith irreversible thermodynamics. 
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diffusion force; diffusional flux; comparison between kinetic theory and 
irreversible thermodynamics. 

1. I N T R O D U C T I O N  

T h e  c a l c u l a t i o n  o f  t he  t r a n s p o r t  p r o p e r t i e s  for  a sys tem c o m p o s e d  o f  a 

b i n a r y  m i x t u r e  o f  d i s s i m i l a r  s p h e r e s  u s ing  the  ~ e l l - k n o w n  E n s k o g  a p p r o a c h  tJj 
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his calculations were never published, thc results havc been reported in the 
literature "~ for a long time. On a lirst examination, the problem of a binary 
mixture looks so much like the one-component case thut it would seem 
worthless to pursue any detailed calculati~n for its propcrtie.~. I"urthermore, 
many authors ' z -m have either used lhenl or rederived them by other methods, 
apparently holding no doubt about their correctness. And even further, 
experimental work done mainly on hard-sphere-like mixtures, measuring 
essentially diffusion coefficients, has been compared with such expressions/ '~ 
Thus, one more paper on this subject seems hardly justified. Yet we believe 
there to he some points, both esseniial and minor ones, which to our knowl- 
edge have not been adequately discu~-~ed i~ the literature. Due to the great 
importance that the Enskog-Thorne results have played in the kinetic 
theory of  gases, we feel that clarification of such points will add to our 
understanding of these complicated phenomclm. 

Our paper is in essence of a pedagogical nature. New restllts are obtained 
but are not of  a fundamental kind. However, ~e hope thr the linal restllts 
will be useful to those engaged in expcrinaental ,xork and/or in computing 
transport coefficients. This is not ',ill at irrelevant, especially when ill recent 
yearsr u;~ we have seen how suitable it is to use Enskog's theory to represent 
such properties for simple dense fluids at reasonably high densities and 
pressures. Hopefully, this will also be true Ii)r ,~ixtures. 

This work was motivated by the follo~.ing considerations: 

1. Although expressible in terms o[" a power serics expansion in the 
density, Thorne's  results for the transport cocllicients arc strictly only valid 
to first order. Indeed, the radial distribution Function X is only approximated 
to account for the common volume of two sphcres. To ineludc corrections 
which are of  higher order, one would have to estimate volumes of pairs, 
triads, and so on of associated spheres. I-urthermore, it has been shown 
recently by Sengers et al. (17.181 that for a one-component system and within 
thc context of  the generalized Boltzmann cqualion which includes the triple 
collision term, "'a~ Enskog's theory is only an approxirnation toJirst order in 
the density. This means that it would be hard to evaluate the importance oF 
the higher virials for the transport coelticient~ when a get~eral convergent 
kinetic theory of gases is still lacking. 

2. In view of the preceding statement, one may wonder ho~ valid are 
the comparisons which have been made bct~ccn Thorne's results and 
experimental data. Indeed, one ~,]lotild not expect more than first density 
corrections to the formulas provided by the dilute hard-sphcre mixture 
model. Furthermore, a comparison between the kinetic results with 
irreversible thermodynamics has, to our know, ledge, not been carried out. 
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Thus, experimental quantities may wry ~cl l  not coincide with theoretical 
o11c~. 

3. In a recent lette;/a" it ~as Cml-Hla,,i,'c'd that the point at which 
l-nskog's function X~, for a binary mixture is cvahiated is reiatcd to the 
explicit values for the fluxes of molecular properties, tlere, we show explicitly 
that as far as the transport of  nmmcntunl and energy is concerned, such a 
point may bc chosen anywhere along the line joining the centers of  the 
colliding spheres, leaving their respective lluxes in~ariant. This is not the 
case for the mass flux, where there are as many forms for the diffusion force 
d,# as possible choices, namely, an inlinite numher. All these vectors contain 
an additional term with respect to Thornc's  original expression which is of 
higher order in the density, i.e., of order n'-'. Furthcrjnore, it is also shown 
that none of these vectors leads to restllts which are consistent with irrever.,,ible 
thermodynamics, ml~ 

4. Since the Choh-Uhlenbeck integral equation for multicomponent 
systems has been extensively discussed together with the explicit expressions 
for the transport  coelticients, ~"z' one can compare how Thorne's results tit 
into this general scheme. This comparison has been dcah with independently 
and will be published elsewhere. (2a~ 

Features associated with the first three statements will be covered in this 
paper. Our purpose, again is to offer something useful to workers engaged 
rnostly in the application of Thorne's  results. Thus, we take as our starting 
point the generalization of Enskog's equation for ,l binary mixture m~ and 
proceed from there. This is summarized in Section 2. Section 3 contains an 
outline of their solution for the hydrodynamic rcgirne using the Chapman-  
Enskog 12:'l approach. Since the me/hod is ,~ standard one, the algebraic 
details are minimized, including those involved in the derivation of the 
hydrodynamic equations. Section 4 contains a brief discLlsSion of'the solutions 
to the set of linear inhomogeneous integral equations lot the perturbation 
functions q5 i using a "scaling" transl'orniation which actually reduces them 
to the dilute gas case. Section 5 is dew,ted to the calculation of the fluxes 
of  the molecular properties. t h e  derivation of the transport coefficients is 
outlined in Section 6. Up to this point, the lnett lod is valid, in principle, to 
all orders in the density and to first order in the gradients of the system. Also, 
the explicit form for the diffusion force d,. i., a function of the point chosen 
to evaluate X,J �9 In Section 7, we analv/t: the content of the~e statements in 
the light of irreversible thernaodyna,nics. In particular, x~.e show that the 
diffusional effects arising from a Thorne l!nskog sclacine are consistent with 
the phenomenological ones only to first order in the density. 
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2. K I N E T I C  E Q U A T I O N S  

Wc considcr a system composed  o f  a binary mixture of  rigid spheres 
with diameters  +~ and masses m , ,  i +~ 1, 2, enclosed in a container  of  volume 
V with a number  density n~ of  species i. 

In order  to establish the kinetic equations for this system, we use 
Enskog 's  assumptions:  

I. Only binary collisions between molccules are considered. 

2. The  molecular  chaos assumpt ion is made,  i.e., the correlations 
between positions and velocities of  two particles in /+-space are neglccted. 

Thus,  in the absence of  external forces, the kinetic equat ions for the 
single-particle distribution functions~/) are given by ~4~ 

'~ ')7-t v~" ar = .== [x,Ari " y , , k ) / ) ' ( r ; .  ~; ,k ) l / ( r , )  

- -  Z,j(r~ -- y~jk)J~(r, -- c, ~k)./i(r~) ] c~z (g,  �9 k ) d k  dvj (I) 

where v~ and v /  are the molecular  velocities before and after the collision, 
respectively, and X+~ is the generalization of  Enskog's  function which accounts  
for  the shielding and the excluded volume in a collision between molecules 
of  species i and j. This function is cvaluated at an arbi trary point located 
between the centers of  the colliding molecules (sce Fig. I). This arbitrariness 

4 The following notat ion is being used: ]i ] ( r , ,  v , ,  t), where r, is the position of  a par- 
ticle of  species i. 
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Fig. 1. An arbitrary point (r~ i yk) ,  in Ihc lh+c joining the centers of  molecules 
j is used to evaluate |.:nskog's function x , , .  

and 
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will appear to be irrelevant in the calculation of all the fluxes related to the 
transfer of molecular properties, with the only cxecption being mass transfer, 
where a different diffusion force occurs for a particular selection of the point. 
Also, in Eq. (1), the quantities a , j ,  k, and g,.~ are defined by 

criS ~ {cr~ -4 {r?).i2 (2a) 

k .=_. (r~ --- r~)/i r~ - r ,  (2b)  

g~ --; vj - v, (2c) 

Since in Eq. (1), the function .L,./~, and X,J are evahtated at differcnt 
points in configuration space, duc to lhe f;)ct that the colliding molecules 
are not point masses, a Taylor series expansion around the point r~ is 
performed. This expansion is justified on the basis that the assumption of 
local equilibrium is invoked. To first order in the spatial gradients, this 
yields the following result: m 

3 

[e~/~t]<, . . . .  22 .~I~" {3} 
I ,  I 

where [af~./at]~j stands for the rate of change of./ ,  due to collisions with 
molecules of speciesj. The .L~t~ k) terms of Eq. (3) are found to be 

Y --~i(~'('} == X~j(r~) (J~'~' ---f , / j)  ~,(gj, �9 k) dk dv) {4) 

,j -- X~,(r~) k ' (f~ vJj' -F/,  W;) ~,a~(gi, " k) dk clv~ (5} 

f f  k"  V~.i,(f,.'.~' -- .~J;))',~{r::s{gs, �9 k )dk  dvj 
(6) 

where V =:- 0/Or. Substitution of Eqs. (4)-(6) and {3} back into Eq. (1) yields 

Ot -F v; "T-r  . . . . .  '~ (7)  
., I / , '==1 

Equation (7) expresses the kinetic equations for.ll up to terms which 
are linear in the spatial gradients of the s) stem. 

3. H Y D R O D Y N A M I C  S T A G E .  H I L B E R T - E N S K O G  M E T H O D  

This section contains an outline of the standard tlilbert Enskog method 
which is used to obtain the solution for the L satisfying Eq. (7) when the 
system is close to local equilibrium. I n this stage, the so-called hydrodynamic 
stage, one assumes that the distribution functions can be expanded in a 
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power series of  a uniformity parameter ~: which is a measure of the spatial 
gradients in the system. Thus, 

./} /,-~.) -m 
. ,  : - ~ l i  ' "  (~)  

Substituting Eq. (8) into Eq. (7) and collecting terms of the equal 
powers in ~, noticing that the left-hand side o1"(7) is already offirst order in ~:, 
yields the following results. 

(a) "ro zcro order in ~, we have that 

'2 
, ~  .l{~) 91} , I ( / ,  .f; ) o (9) 

i ,  I 

where 

J(JiJS) = ,(,!" ( . / ; / i  " /'1.') oi',(g,, �9 k ) d k  ch,'j (10) 

Equation {9) describes the tmil'orm and stalionary state of the mixture. 
The sufficient condition for thcse equations I,, be satislied is that t he f l  ~" be 
local Maxwellian distribution functions, namely 

f l  ~ .= n,.(m/2rrkl3T) a," exp(-  m,c,2,/2kuT) (11) 

but the necessary condition cam3ot be invoked due to the fact that no tl- 
theorem has yet been proved for Eq. (I). Thus, one must assume that this 
solution is unique. Eurthermore, the six arbilrary parameters which appear 
in Eqs. (11) are selected so that thcy correspond to the true local particle 
densities: hi ,  i .... 1, 2, the local h3drodynamic velocity e, and the local 
temperature T. Therefore, 

", i Jl'" J", 112) 

2 
.r (h i  
I ,  I I I  "r dV, 

i = . l  

pu = {13) 

~,'Tk B T 
2 

." (0) I " . I ,  , . r e , c , -  dv~ 
t 1 

(14) 

ei :=- vi --- u is the thermal velocity, and k u is l]oltzmann's constant. 
In order to obtain the hydrody,l,mHc equations to this order in the 

gradients, one must first derive the transporl equations to lowest order in 
the gradients. This is achievecl by substitution of the tirst tu;o terms in Eq. (8) 
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back into Eq. (7), keeping only those terms which are o f  first order in ,~. 
This gives the result "~ 

( ,  . s ; 
�9 - X , A a t . l ,  .1, ) :  . - , . , ,  . ,s ,J ~ ' - , s  . . . .  

./ 1 ) = . 1  / , / 1  

(15) 

When these equations are multiplied by ihe collisional invariants 
(sz =' 1, m~c/, and re,c,?~2, an inlcgla/iola i~ performed over the whole 
velocity space, and a summat ion  is carried out over the species, the following 
results are obtainedS: 

(i) F or  ~b :.- 1, we get the equation or  continuity 

( D n / D t )  ! n V . l l  - : 0  (16) 

with n -: Z hi .  
i , 

(ii) For q~ = m,e~, we get the equation of  motion 

( D u / D t )  -!- (l:'p) Vp, {) (I 7) 

wherc p ,  i~ the hydrostatic pressure dclh~ed as 

') '2 

po :~ Y~ }2 , , , / , - . / ( l  ;,,,x,,) ( is )  
i = 1  j - - I  

with p Z l  P~ =: Z i  #nini and b~ s --. ~ ,vH/i~ 

(iii) For  ~/J, = ~m~c~ z, we get the energy equation 

1 D T  2p,) V u 0 (19)  . . . .  ; . . . . . . . . . . . .  �9 z z -  

T D t  3nkBT 
where 

D I D t . -  (~/~'t)  i u . V  (20) 

Equations (16), (17), and (19) are the Eulcr equations for the mixture. 

(b) To first order  in ~:, the  equations l'or/'i ~l~ are those delined by Eq. (15). 
in this case, the left-hand side, which is only. a function of.,,r. ~~ can be 
computed in a straightforward manner. Indeed. the strcaming term 

, .~r("' = [(e/&) + v; �9 (r3/ar)]L ~~ redtices to 

cl  f(o) - -3nk~T[l  + (2p, /3nkBT)(<e,  ~ - " o ,  = , ~)] 2~6,(#, : Vu 

J,- e; �9 [V ln(n~&T) �9 (%'-' - ~)V In 1 - ( m , / p l , u T )  Vpo ] 
(21) 

where %2 - ( m i / 2 k n T ) W = c i .  

s ]'his procedure requires the previous evaluatiou or the intcgral,~ given by 7p/'), k 4 1, 
with f, = f ( o ,  which is outlined in Appendix A. 
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Addit ion of  this equat ion with the six terms arising from the remaining 
part  of  the inhomogeneous  term of  Eq. (15) leads to a set of  integral 
equat ions f o r t h e f i  m, namely 

2 

. ,  . ;  . . - ,  -~-- ,b, 4 , /  - , b / )  , ~ , I g , ,  �9 k ) , / k  ae, 
j = l  

. . . . . . .  f}o){&(~ 2 _ ~].) c, �9 v In T i- (,,.,,',l,) d~, �9 c, 

' ' " ~ ~{'b/") K;(g', z ~)V. u} (22) -I- 2K,: { ~ i , ~  : Vu -; -- 

where f /m  == f~o)r and {S}.~ stands for the symmetr ic  par t  of  the tensor S. 
In Eq. (22), d,j is the diffusion force delined by 

pipj ( l 1 ) nj 
di~ -- pnkRT -77-,. Vpi . . . .  PJ V p j  ' . . . . .  /1~ /~./,X/~ 

[ 2v- -  ~ .  ] X V i n ( n s ]  ff_(Mi,_.. M;,)VIn 7"-~. " V l n x o  (23) 
\ H i / o ' i j  

where Pi == n l k ~ T Z ~ _ x  (1 -~- bi,x,3. 
Here, the following notat ion has been introduced: 

2 

K i - - :  l -~- ( 1 2 / 5 )  ~ h,,x'i~,r (24) 
)- I 

2 

Ki' .~7~ 1 ~- (4/5) ~ lh,x,,j.~lji (25) 
]- . l  

2 

K;' :-: l H- 2 ~. b ,x ,~M, ,  - - ( p , j n k ~ T )  (26.) 
1=1 

where Mii : mi / (m  i .f- m,)  = :  m,,.'llt,} a n d  m , ,  . -  x . ~  1 m i .  
It  is impor tan t  to digress for a moment  to emphasize the fact that  there 

are as many forms for the diffusion fi~rce as choices of  the point of  evaluation 
of  the X~J function. In particular,  in Thorne*s original calculation, his form 
for  d~i is compat ib le  with dm choice Iocming ttle point in the middle of  the 
line joining the centers of  the colliding molecules, i.e...v,, ~, /2 .  In this case, 
the last term in Eq. (23) vanishes. Two other choices have been suggested 
in the literature. The tirst o n d  TM suggcsts that X,i be evaluated at tile contact  
point  o f  the two molecules, i.e., y,j -: ,m:'2. in which case the last term in Eq. 
23 gives a contr ibut ion 

[(oh - -  t~j)/(c~, . %)]V In X'o (27) 
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The ~ccond one ~z';) suggests that X, is evaluated at the center of  mass 
of  the two colliding molecules, i.e., 3% M, , r i , ,  and the contr ibution of  
such a term is 

[(m i - m~)/(nl~ ,,/1,)]V In XiJ (28) 

As we shall see later, none of  lhcsc choices is to be preferrcd with 
respect to the others. 

The solution o f  the set o f  linear inhomoge, leous integral equations l\~r 
&, will be discussed in the following sectton. 

4. S O L U T I O N S  T O  T H E  L I N E A R  I N H O I O G E N E O U S  
I N T E G R A L  E Q U A T I O N S  FOR ~i 

In the previous section, we derived a set of linear inhomogeneous  
integral equat ions for  the per turbat ion ftmctions ,~,, i . I, 2. In order to 
solve for these functions, we shall make  use of  the solutions of  the analogous 
integral equat ions for the dilute mixture and then show that a simple trans- 
format ion  of  variables will lead us to the solution of  Eq. (22). In fact, if in 
these equations we set K~ = K, '  = I, X , :  )(~ : - 1 ,  and K~'-= 0. we 
obtain the set o f  linear integral equat ions for the corresponding dilute mixture 
in the Bol tzmann case. The  solutions arc well known to be of  the form ~.6 

~i = -$,, " V In T riD, �9 a.j  --  ~,, : Vu (29) 

where .~, I5 and B satisfy the following integral equations:  

2 

i" ~ [!o)f(o)(.i. ~ ~ j  X /  ,%./)o-~j(gi, �9 k ) d k d c ~  r ~) 
- -  - -  : . l i  % f ' ~ i  - -  C z  

i,= 1 " ~ 

(30) 
z r~- ( "  (o)(o) " , -  l f ~ f s  (15~ q - ~ j  .... IS/  - - 1 5 / )  ,,:,(g,, " k) dk dcj =-: (1/n,)f(,~ (31) 

)=-1  " " 

2 

E " " (0 )  ( 0 )  ~ . " 3 ~ ( O ) j c z ,  r,,'~ t 

) = 1  

(32) 

In orders to solve for the functions ~/~, satisfying Eq. (22), one assumes 
that  they are of  the form 

~i = - - A i "  V In T ..... nDi �9 d,, Bi : Vu -- I I ,V  - u (33) 

6 The tilde stands for the dilute case. 
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By substitution of Eq. (33) back into Eq. (22), the following set of 
integral equations is obtained: 

9 

f i" ~o)~(o) . . . . .  As') ,y~'s(g,," k)dk des h" /(o)t::; " ?,.) X~J,/J.I~ J j  I,% ~- Aj -- A/ . . . . . .  .. , ,  , , , ,  -- c, 

(34) 
o 

" (o) (o) ~ , ~ , , j j j f , :  J'j (D,-i D~- D /  D / ) , / z , , ( g , , ' k ) , l k d e ,  :::: ( /n)./(,~ (35) 
j : l  

2 
" " ( o )  ( o )  , ,  - )  z -  ,/(o)f(.,~ ( ~  Z ~.',, J J ./, ):, (B~ :.- B, - B/ - B/):re (g,,- k)dk de, .... .r,,./, , ~,,.,,,, 

.; ~I 

(36) 
2 

" " (o) (o) ,..,,~(o)/.: '.' ~) E X, .lj :, :, (n, e ii: H,' -- II/),,~,(g,,. k),Ik de, - -  " A i J  ~ ~ r ) ~  -- 
j = l  

(37) 
with i standing for each species. 

The solutions to Eqs. (34)-(36) arc now obtained in a straightforward 
manner from Eqs. (30)-(32). Indeed. I!q. (34) can be reduced to the form 
of Eq. (30) through the following transformation: 

~ .  - +  A i ,  n ,  -*  n , K : ,  , .z ~ ' " (38) rij -~ X , . , : r T j / I ~ ; K i  

Also, Eq. (35) is reduced to the form of Eq. (31) if 

I ) ,  .... D , ,  ,,~: . X, , ,r:i  (39) 

and finally, Eq. (36) is reduced to the Iiwm of Eq. (32) if 

B i  - ~  B i  ?1~ ~" t l i K , :  , 2 "2 �9 : , , , , . , ,  . X , / ~ , , . , ' k ,  K~ (40) 

Equation (37), which gives the integral equations for the functions 
H, which are the coefficients o fV  �9 u, have to be dealt with in an independent 
manner. This is so because in thc dilute mixture, the bulk viscosity, which 
arises precisely from the term containing V �9 u. vanishes identically. 

Since the solutions to the functions jz, g, and I) arc alrcady known for 
the Boltzmann mixture, one can easily x~ rite down the corresponding solutions 
for A, D, and B by simply applying thc transformations given above. Their 
explicit form will be given at a later stage. 

5. F L U X E S  O F  M O L E C U L A R  P R O P E R T I E S  

The flux of the various molecular propcrlies, mass, momentum, and 
kinetic energy, can be calculated by direct derivation of the equations of 
change for such properties. This can be done by a standard procedure ~ 
which shall not be repeated here. The resuh J~ that tile fluxes of molecular 
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properties ~/Ji ( : m , ,  re,c,, and m,c,:i'2) is the stlnl of tWO contributions, the 
kinetic energy contribution and the onc arisim- from the potential energy. 
The former contributions are given by 

(i) Mass flux Jl ') .J'/),,~,c, ,Iv, (41) 

2 

(ii) Momentum flux P(;" ~ i't;m,c,c,, dr, (42) 

2 

(iii) Kinetic energy flux j!/..I ~" I Ji'bn'c'~c' dvi (43) 
i I " 

The latter contributions, also called the colli~ional transfer contributions, 
are a bit more difficult to obtain. Here, we shall outline a generalization of 
Enskog's calculation for a single-component ca~e to the binary mixlure. 

Let a plane be located at an arbitrary poinl with a vector r between file 
colliding molecules (Fig. 2). Then, the flux vecior 't',, of a molecular property 
,]J~ due to the collisions between molecules of species i and j is found to 
be(L,_,~ 

~ i j  I 3 - .  = .~es, ,  f f f  (~D,' �9 ~/,,).s . i ' ,k ) . t i ( r  , ' ,k)  X., .[r]  

• (gji " k)k dk dc~ r i (44) 

- -  K (uni t  v e c l o t )  

\ 

, j 
/ 

center  of  mo lecu le  L ~ .  ; .  . . . . . . . . . . . . . . .  t ;  . . . . . . . . . . . . . . . .  ~ " J  / ' ]  center  of  molecu le  i 

} . . . .  ,oc, ~o<o, 
] " ,  

I 

/ / 

or ,g in  . / 

plono 

Fig. 2. An arbitrary point r between the colliding molecules is used to locate a transfer 
plane for molecular propertic,~. 
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Expanding this expression in a Taylor scries around r, it reduces to 
the form 

-.~cr~ [X~J f f f (~lh' --- ~/J,) /[/](g,, "k)k dk dci Wu d c  i 

fff +,)/ , / ;k.  U)k ,,k ,c, )'iJXi~ 

- -  Y~iXi, j ' ( f  (,tbi'--- ~/,,)J"/Jjk" V ,n./j(g, "k)k dk de, des] 
J (45) 

where all functions appearing in the right-hand side arc now evaluated at the 
point r. Thus, the collisional transfer contribution of any molecular property 
is independent of the point where the plane is chosen to lie. 

The total contribution to the fluxes arising from collisional transfer 
is of the form 

W ~ : ~ j ,  i , j .=  1,2 (46) 

From symmetry arguments, one can see that q~j =: '.bb, and hence the 
evaluation of Eq. (46) is reduced to the calctflation of ~11 and Oh', �9 

We consider now the collisional transport of the momentum of the 
molecules. When r = m,e~ is substituted into Eq. (45) and the integrations 
are carried out (see Appendix B), one obtains 

~ " ( . ' 2  -!  5 ~ M,  ib,,x~ m, [ J , ,  dc,'l -. [RIVul,~-, V-u1]  ~ ~ o,,~ 
i==1 ":= " ~-.1 ) = t  

t47) 

since q.'* : :  P*. In Eq. (47), 1 is the unit tensor and 

a T 1/2 ~ I 2 r ~- t~('rrk/3 ) �9 (21 I,," I , j3fj i)  1/ ndbcr (48) 

In the case of the collisional transport of kinetic energy, we set 
~b,: == m,qZ/2.  The evaluation of the corresponding integrals (see Appendix B) 
leads to the result that 

J,:* = ~ -i~ MijM~,h,x , . j l  m, j ./ic,'2c, dci 
i , . d  " 

'2 '2 

-- ~(2wkB7" ) ~" ~ n,n,)(,.s,i~,(M,,Mjjmo)~, 2 V T  (49) 
i = l  j - 1  
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Equations (47) and (49), when addcd to their respective kinetic contri- 
butions, give the complete expressions for the momentum and energy 
fluxes. These expressions, together with the explicit forms for.fl~ up to terms 
linear in the gradients, will be used in ihe following section to calculate the 
corresponding transport coetficients. 

6. T R A N S P O R T  C O E F F I C I E N T S  

In order to compute the transport coefficients for a mixture of dissimilar 
rigid spheres, we use the resultsobtained in the previous sections. Indeed, the 
fluxes for the system are given by Eqs. (41)-(43), (47), and (49), since there is 
no collisional transfercontribution to the mass fl.x, and also because 

J~ =:= J(.~) ' J ~ )  (50)  

p = p(k) :. pl,,~) (51) 

On the other hand, up to first order in the gradients, the single-particle 
distribution function for species i has the form 

A = f l ~  l i r . . . .  ) (52) 

The procedure is now straightforward, so that we shall not repeat lhe 
details here. m Taking into account the inodilied form for the diffusion force 
d~j given by Eq. (23), one finds thai the diffusion coefficient Dr, and the 
shear viscosity r] are identical to the restllts obtained by Thorne. m The 
thermal diffusion ratio is given by 

kr  = ~{(nx/n) m l i i ~ K l ( a o i a _ , l  -- a,, la,. l) 

-[" (nJn)m~l /ZKp(a .  lail " a,lal l)I/(ana, i i -- a~_l) (53) 

differing by a factor of X~-~ from Thorne's restll(5 Similarly, the thermal 
conductivity A is simply kh a times Thorne's value. "Fhus, all these results 
confirm their independence with respect to the point of evaluation of the 
function X~. 

The bulk viscosity is given by 

1/2 1 / 2  '> 4 '2 .1 1 / 2  2 4 (r, kBT)  [mz MI XlllT1 {-" 2(PmoM~., l[..l) l F m.z n.z Xz.,.~z ] : :  1 I I# Ip ( J IPXI  2 

(54) 

showing that it is an effect at least of order n'. This result is identical to that 
obtained by Tham and Gubbins. ~sl 

All the quantities appearing in Eq. (53) have the same meaning as in Section 16.9 of 
Ref. 1. 
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Finally, ~:e should like to emphasize that although these results arc 
apparently correct to all orders in the densilS., this is not the case. In fact, 
a close comparison with irreversible tllermod,'r will show that this is 
true only to first order in the density. This point will be discussed in the 
following section. 

7. C O M P A R I S O N  W I T H  IRREVERSIBLE T H E R M O D Y N A M I C S  

In view of the preceding lesults, we shall use Eq. (23) for the diffusion 
force in order to compare it with irreversible lhermodynamics. 

Boltzmann's equation corresponds in irreversible thermodynamics to 
the local validity of the perfect gas assunq~tion. In lhis approximation, when 
the problem of mixtures is considered, one uses the same form for the diffusion 
flux from both the macroscopic and microscopic points of  view, namely 

/~:T) 
,~ I - 7 - / -  ( 5 5 )  cl -- % . . . . . . . . . .  DI:, (d 2 kr  

HIl l2  -./v . 

On the other hand, in the theor~ of moderately dense binary mixtures, 
one tinds expressions for this flux x~hict~ arc formally identical to Eq. (55). 
However, in irreversible thermodynamics, the vector dr, is a function of 
those local thermodynamic variables which are cousislent with the corre- 
sponding equation of state, s In kinetic theory, from Thorne's  generalization 
of the Boltzmann equation for a dilute mixture, an expression for the diffusion 
flux is obtained which is of  the same Form as Eq. (55). Yet, tim vector d,, has 
no obvious connection with irreversible thermodynamics. It is thus interesting 
to compare the two expressions for such a tlux in order to lind out the 
validity of the kinetic model proposed I\w the dense mixture. 

This comparison will be carried out taking into account the fact that 
From the phenomenological point of vic~, d~z is determined up to a term 
proportional to the temperature gradient x~hich may be included in the 
second term of Eq. (55). in fact, such a rearrangement of terms would 
correspond to a transformation between forces and fluxes where the diffusion 
flux is kept fixed, one force V ' r /T i s  lixed, and the force dv~ and tim coefficient 
kr change. 9 

We recall that in irreversible thermodynamics, the vecto? ~ d~ ~ is 
defined to be equal to ~2~ 

a 
12 - -  ,i i . . . . .  , . , . I . I  

3he equation of state for the ideal case corrcclcd ;sith higher-density terms. 
This calculation is outlined in Appendix (7. 

~0 The superscript H stands for Hirschfeldcr. 
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where/x, and S~ are the chemical potential and partial entropy per particle 
of species i. These thermodynamic variables can be calculated from Ihe 
equation of state given by Eq. (18), i.el, Thorne's equation of state. Since 
there are two corrections in orders in the density, we shall discuss them 
separately. 

To first order in the densily, "fi~ornc's exprcssion Ik~r dva namely ,4crh) 
does not correspond to d~t~ I but their difference is proportional to V T / T .  
Consequently, the corresponding diffusion llux is compatible x~.itia the pheno- 
menological equation (55) but by the above argument, tile kinetic thermo- 
diffusion coefficient k crh~ i snot  equal to the phcnomcnological one. They are 
related through the expression 

k ?  ') -= k g h) -t- n a 3 -  n'%a " '1"'":' , ,q  I m., 0",e (57) 

where k~? l" stands for tile kinetic ('I'hornel expression of k 7 . Up to this 
o,'dcr in tile density, the point of evaluation of tile function Xv, has no 
influcncc whatsoever on the results. 

To second order in the density, the t~o expressions for kT-are different 
by other terms besides the one proporiional to VT/T. Consequcnlly, the 
kinetic expression for the diffusion flux is inconsistent with the phenomeno- 
logical one. 

The difference between the two diffusion forces is given by 

= ~ - ~ , ~  ~- - 0"? ., . . . . .  =--or '~'-" 3~r ---1 g8 (2v,,,. _-- 0.0 'h~_ 

x [(8o'12- 3o1)0.1:' ~'nl gl/~ -e ' r-  ' (8 . , , :  3,~,.1 0 . , / T i - - - J  (58)  

where a term proportional to V I 7 T  has not been taken into account. In 
Eq. (58), the point of evaluation of Xv_, appears explicitly on tile right-hand 
side and notice should be made of the fac! that regardless of tile point where 
it is evaluated, the right-hand side never vanishes. 

These discrepancies, apparent ones to lirst order ill tile density, real 
ones to second order in the density, are mportant when comparison is 
made with experimental results. In order to emphasize this point, we have 
expressed our results in terms of those given by Landau and Lifshitz ̀~7' 
and de Groot  and Mazur r'~ since they sccm t~ be best litted to express 
experimental data. in Refs. 27 and 28 the diffusion coefficient D is related 
to the coefficients D~2 appearing in I-q. (55) through 

D = Dl2(nplpanlim.,./p:~kl~l)(?'l(? q)p,7 (59)  

822/7[2-6 
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where c~ is the mass concentrat ion of  species I and ~ is the chemical potential 
o f  the mixture, p. = mi-1/z, - m., ~/~,, - 

Also, their thermal  diffusion ratio is nol identical to ka (ff~, but we have 

( . '~ /n~. ,~)  - "') D~hr (p'-'/p~p~) Dkr (60) 

which thus relates k~r m with kr thr,}ugh I-q. f57). Other quantities, such as 
the Soret and the Dufour cocfficients, arc also related to Eq. (60) and thus 
to the kinetic expression for k~ h~, but these shall not bc written here, sfi~ce 
they are explicitly given in Ref. 22. 

As a final remark,  we would likc to emphasize that the Thornc  Enskog 
scheme dealing with moderately  dense mixtures for rigid spheres is not 
adcquate  if one goes to an order  ot" approximat ion  quadrat ic  m the density. 
This holds true at least for the diffu~iomd effects on the basis of  irrever~iblc 
thermodynamics .  "['he clarification of  this q~estion will have to wait until the 
foundat ions  of  a kinetic theory of  densc gases is laid. 

A P P E N D I X  A 

Here,  we outline the evaluat ion of  the integrals '~.,(~~ ( f " ' )  by extending 
Enskog 's  method to a binary mixture. 

(i) F rom Eq. (5), 

.~j "---- Xi~ k "  V f j  ~ , ,  ,~ c r , . ~ g j i ' k d k d c  j (A.I)  

Owing to the form off~~176 ~ r!")e (~ �9 .,, ~j , Eq. (A.1) becomes 

- . i j  = f i ' f j  k ' V i n ~ . ; ~  j ,  ) , ~ j g ~ , ' k d k ( l c j  (A.2) 

Taking  V ln(f)~176 f rom Eq. (I 1) and substituting into (A.2), we get 

~ ( 2 ,  ff (o,(o) ij = X~i f ,  f s  k " [V In(n f . / :~)  ; (m/2kBT'Z)(c~ z , c7)  V T  

--  ( m / k B T ) ( e / - ! -  c~) �9 Vu] ,~,g,, �9 k dk dej (A.3) 

Using techniques similar to the ,me u~ed in Section 16.8 of  Ref. I in 
order to integrate over  k, we obtain tl;c lbllowing result: 

fLp(2) ., s .~(o) f O){gj i  in(n~/7-3) 

. _  . �9 r! C 2 + ( m / 2 k B T 2 )  V T  �9 [2c~2g,, ~..~4,~2g~(c~ gj,) - - -g ,  , .... 3M,jg~,g~i)] 

+ ( 2 m / k B T ) [ ( c ~ g j ~  - -  ~ ~ " ~, ' t i i~g'~iV �9 dc~ ~M4~,.,~g,,) : Vu --- u]} (A.4) 
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Finally, integration over e s yields 

~ '  = - b . x . f ~ ~  In(,,.,,~x,;7") -i- v In(,,5,,;) v In(x,fl ' )  

-- M i j ( l s a M j i ~ / '  'i- 2Mi~ - 4Mj,)V In 7] �9 c, 

+ - ~ M J g f 6 ' ,  : Vu -~-- ~M] , (~ ,  2 -- ..~-)V �9 u} (A.5) 

(ii) Evaluation o f / . ~ ( f l m ) .  F rom Eq. (6), 

f J  .-. �9 ~,o,.,o, ,o,. ~o). c/ . , (3)  " k " v x i j ~ J i  J s  ~- f ;  ' f j  ) Vi~(ri~(g~i �9 k) dk dcj (A.6) 

Integration of  (A.6) over k gives 

c~,(3) 4. . . . .  2 r f-(t~) ~j = -~,,.v,~,~j, VXi ~ ) .I, gj, dcj (A.7) 

Integration of  (A.7) over ej yields 

_L~,(3) (o) o . . . .  ( 2 y , / ~ , )  I?,,f~ c, �9 VX, ~ (A.8) 

A P P E N D I X  B 

In this appendix,  the collisional tran,~fcr of  molecular properties due to 
collisions between dissimilar molecules is catculaled. 

(i) Collisional transfer of  momcntun~. Only the first and the second 
integrals of  Eq. (45) will be evah, atcd, because the evaluation method is the 
same for the remaining ones. 

When '4'~ = m~c~, the first integral of  Eq. (45) becomes 

I~ ~: m~ f f f (c,,-. r  k)k dk dc, dcj (B.I) 

Integrating (B.1) over k, taking into account that the velocities c; and 
c /  depend on the vector k, and making use of Section 16.8 of  Ref. I, we 
obtain the following result: 

" f J / ~ ( 2 g . g j i  de, dcj (B.2) 11 := (4rr/15) m,Ms; f ': g .1 )  

Substitution of  gs,: = c s - - c ,  in (B.2) anti integration over c, and e, 
yields 

2 "2 

J,--- 2,, E ,,,, j'~c,e, ,;c, ~ ,,,~ y ,,,, j ~ ; '  de, (B.3) 
j = l  ) . -1 
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Substi tut ion o f  ~ --=- m~c~ into the second integral of  Eq. (45) yields the 
following expression: 

,, , , , , , . . f l y  <<,' _-..<,>.<,,>. <<,,>,,,, ci)J ,  J~ ~ " VIn  . . . .  k ) k d k d c ,  dc i (B.4) 

in tegrat ion o f  (B.4) over  k yields 

12 ~,TrmiMji Vii : ( : ( o ) : ( o ) , , ,  (o) =- . J j l i  .1, ~l)gJ, " V I n / ,  )(g>,g,j :.- t,,~,l)/g,] 

- .  gj,[(V l n / l  ~ gj,.-I g j,V In/!")]} de, tics (B.5) 

In order  to evaluate (B.5). a change of  the variables of  integratio~ ~. will 
be made f rom c~ and Cs to g , , ,  the relative ~.clocity. and Go (; -- u, whcrc 
G is the velocity of  the center 0f  mass and u is the hydrodynamic  velocity. 
Thus  

ei =: Go- M.,g~, (13.6) 

and the Jacobian I J i  o f  the t ransformat ion  is found to be equal to one. 
In terms of  these new variables, 

.f~o)])o) = n~nj[(m~mj)3/2/(27rkB T)S] exp[- me(G0 z ~.- M~M~sg~)/2kn'l'] 
(B.7) 

and 

V In f~0) .... V In n~ + [(mJ2kBT)(Go" M~',g~i -- 2Mj~G0 �9 gj~) - ~] V In T 

i (mi/kBT)(Go .... M>igj,) �9 Vu (B.8) 

Substi tut ing (B.6)-(B.8) into (B.5) and taking into account  that the 
terms arising f rom odd functions o[" Go and g~, vanish, the integral (B.5) 
becomes 

l.,_ f f `~ '''> ~ . . . .  f ,  ] j  [(Vu : g~,gj,)(gjlg.-!  gT,1)/gs,] dGo dg .  

(o) - (()) , ~ry,(.,,'/k,'r)M~, f f f ,  J j { g.[(Vu- g>,)g~,, g~,(Vu, g.)]} riG,) I, ogj~ 
(B.9) 

Integrat ion over  g>, and G(, yields the following results: 

(a) First integral in (B.9): 

j'f f(o)f~,))[(Vu: g~gi,)(g.g~z ! g~,l>/.tb,l dCo dg., 

=, (4n~nj/V'~)(2k)s 7m,.)/m,m)):)"z[(2/15) I Vu)~ -i- (4/9)V �9 ul ] 
(B.10) 
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(b) Second integral in (B.9): 

) f f ,  .[j g, ct(Vu, gji)g,,: !-g,,(Vu .gji);dGodgsi 

-- (4n,nj/v/~r)(2kl~'l),o/,,,m;)(~{Vu}~-; ~-V �9 ul) (B.1 I) 

Substituting (B.10) and (B.I I) back into (B.9) and adding them to the 
result arising from the third integral in Eq. 45, which is readily evaluated, 
we get 

.... ~(rrk, T)l"2ninjx~/r~fi2mo,'14i~M~,) ' "(Y, ..J,,:,t -J.~ -i- V �9 ul) 
(B.12) 

Since, from Fig. 2, y,j !-.vii ~ ,r,, for any choice of 3 ' , ,  then (B.12) 
becomes 

6 ---w,~(~{Vu,~-I V . u l )  (B.13) 

where w,j .:~ ~(rrk~'[') ~,'z nlnjx,jcr~j (2re.M,/11, )l;..,. 
Hence, the collisional flux of momentum due to collisions between 

dissimilar molecules is 

l p~j := 2n-15 P'PSmo "~ X,, ,,Y'-[ {2 I'f,e,c, d e , - . , , , , . ,  1 f./;.c#. ,/c, 
- -  , o . [ ? ; { v u ) . ,  q- v .  u l ]  

( B . 1 4 )  

(ii) Collisional transfer of kinetic energy. 5;ubstitution of @ . m,c,2/2 
into Eq. (45) gives the potential conlribulion to the flux of kinetic energy 
duc to collisions between dissimilar molecules. The method of evaluation for 
the resulting integrals is similar to that used in the case of the collisional 
transfer of momentum. 

When ~fl, =- m~c~2/2, the first integral of Eq. (45) becomes 

f f ]:, = I m , , 3 y  i (c,:-' ,"-)/;/k(~,, �9 k)dk,/t" ,/% ([~.15) 
l J l ' ~ , )  * 1 

Integration of (B. 15) over k yields 

la (2rr/15) o~/ndVlji "l ( f / ~ [ 2 g , , ( g , )  i ,~5,c~" 3M,, . dcj 
, J  t . i  

(B.16) 

Substituting g~/ = c, - cs into (B.16) a .d  iutcgrating over c, and cs. 
taking into account that ff~e~dc~ -- O. !:, becomes 

I3 --~MtjMjix,:~ L h.m,  !'/ic,~c, de, i / - j  (B.17) 
z = . l  
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Substitution of  r : m~c,2/2 into the second integral of  (45) yields 

l , - -  j j j  <, --  c,"" ,-,.,.<o,-)./i . l j  K " V I n f ~ ~  k )k  dk  def d% 
(B.I8) 

Integration of  (B.18) over k yields 

14 : (rr/12) a " '/u~bc.~H( e �9 " oisY~JX~tmiMii . . . s ~ tt ,"  gJ,)(gs,g;, gJil)/g~,] 

-~- g.(e~g, ,  -i-gs~c,.) -i-- .ll,,(3xj~g~,g,, ! g~,l)} �9 9 lnfl~ ~ dc~ d% 
(B.19) 

Making the change of  variable~ (B.(,), suhstituting (B.7) and (B.8) into 
(B.19), integrating the resulting expression over g ,  and G,,, and adding the 
corresponding results from the third integral of  Eq. (45) leads to the following 
expression: 

--- ~ninj('trknaT) 1 '"-( 8 M,., M,,..'m o) ~Y~.,X u VT" ( B. 20) 

where we have used y,; -f. y;~ :.- ~,,.. Then the collisional transfer of  kinetic 
energy due to collisions between dissimilar molecules is given by 

2 

[a?) l , j  : :~MaM,,.'(,, ~. b,d,,, j'./;c,"c, de,. 
i ~ l  

- .~n*nj(rrkuaT") l -'tSM,ra'l,,/m.) o~sX,s V T  (B.21) 

A P P E N D I X  C 

In this appendix, we calculate the thermodynamic quantities appearing 
in the macroscopic diffusion vector (57). This macroscopic force is given by, 
the equation r 

I au ,  I ~t~., :~1 ...... S::..j ~T  
d ' 2 :  P*Pg-- [ W  > r  . . . . . . . . .  ~r ( - ; ' r ]  (C.I) p n k n T  m e m~ m,~ / 

The chemical potential is obtained by s~andard methods: from Maxwell's 
relation, 

(OmlaV)~.,,,,.~,~ - (~ r."~ ,%),-. ~..~,: t ( .2~ 

the r ight-hand side is calculated from the equal ion of  state I 181. We integrate 
Eq. (C.2) with respect to V, keeping con,,tant tile temperature and the numbers 
of  particles. The integration constant is lixcd by taking the dilute gas limit 
for a binary mixture, for which the chenfical potentials are well known. 
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The partial entropies .~; per particle were similarly obtained. 
In fact, when one works with the independent variables, temperature 

and densities of particles, instead of the prcssttre, temperature, and con- 
centration, as is usual in phenomenological theory, it follows that the d~2 
vector takes the simplified form tz:" 

d I 2  - .  
p,p~ I I (ore. t l 

(?'.p!~T) @,'?~q I (k:pl~:F) ~p.lkn~ ] ~T 
~ [-;/~;~--x;n-~-~/,-i~,~; . . . . . .  ,;;: . . . . .  Z : - ~ 7 ~ ; - ,  ~-~--, (c.3) 

where all these partial derivatives and gradients arc calculated a>suming 
n~ , n=,, and 7" to be the independent variaiqc~. The subscript T in the gradient~ 
of the chemical potentials means that these gradients arc taken with variable 
number densities but at constant temperature. 

The rest of the calculation is a purcly algebraic exercise, ~ith the result 
for the thermodynamic force 

dl~ __..P_LPLi 1 [ 1 4,-r :l 4rr , 
?, t~-~ ~ vn, 4-- -T- "' v,,, -~ .-y % v,,., 

5 7r2%en 1 Vn t + ~2csl3~-~ (<sl3 - 18,sics~.,. i 32<r?z)(n 2. Vn I i n I Vn z) 

I l 

~. f8 ..:,~,a(%.~ _ 18,rzCS~,> -I-- 32<~7~),.,. v,,....j 

/'112 
, 4~_ 4rr <sl" Vn l V n  z -,,- ~2 3 Vn,, .:- -~--. . 

_~_. 65 ~2azGn 2 Vn z . F lr2ai~l 8 (a',:l" --- l l4c,.><r~z : 32a~l.~)(n.,. Vn I - i - , q  

l '> V/1 i i-" ~ 7r20"l'l(orl:l - -  18crl(sl,> !- 32aT~)P~ l 

Vn~) 

l (~p l~r )  ~':1~,,, i .:,,'~'7);s,,"<,,,_, l vT( 
[ m, ~.: (@lanDn, -- 7,7.7--~;-i~7,.~7-'7,-,-),,~-J (C.4) 

where tip to terms of second order in density we have 

(~-'p..~: 7) ~'pfen~ 
y'~ (~;p,ian,)nj 

.... kl3 ~1 4-  4,'rr 4 ~  .l ! -3-  %3nl + -3-- 'q%~ 
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,(2;_ o>,,,, 
- -  ,7-- ~ % '  + 3 -  - - 3 -  ' 

, 5"772 6 2 "/r2 '~ 
i- - g -  % n, + -~- %a(%:1 ...... 18<q%, 32<sa~) n,n 2 

772 

i fs %.:,((;o~. --- i 8 (~ . ,~ . ,  .;- .~2 ,4 , ) .  ,,,~., 

2 [ 5 ~ "  
6n : ' -k ~8 rrZ%:'('s':' ..... 18,r,<r?= .: 32,/~,),ha,,., n L l 8  1 i ~ . 

rr z 577" rr. ~#12al j 

2 .~ ~/ 2.~ 4 , - r  ~Y~211111~ . o.2an.:! 
. . . . .  ,, ~ ? " ,  + <q, . "~] t -~- .  ",:"'." -! -3-- ~ " ) 

2 (_2if___ 4rr 2,'r -~ - -  - o,:~ll ,  z q-  < , :~ ,q , t ,  . , ,  :',z '-'1 q ( C . 5 )  
n 2 3 = 3 " '-'s~ 

w i th  a s imi lar  result for  the other term obtahmd by imerchanging I by 2. 
These quant i t ies have been ordered in ascending powers o f  ihe total 

density', to show their  dependence up lo quant i t ies o f  second order in H. 
Equat ions (C.3) and (C.4) lead immediate ly  to Eqs. (57) and (58) given in 
the text. 
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